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Mechanistic model of bursts in mRNA synthesis

Here, we describe a stochastic model of gene expression which explains the mRNA bursts
observed in the experiments detailed in the main text. We analyze a model of gene activation
and inactivation and provide formulas for the steady-state mRNA distribution. We describe
how the parameters were estimated using this formula, and also derive some results for the
noise in protein levels. We end with a brief discussion of intrinsic vs. extrinsic noise in
relation to the experiments upon which the model is based.

Basic model of gene activation and inactivation

In this section, we use the model of gene activation and inactivation first examined by
Peccoud and Ycart [1] to find the relative rates of gene activation and inactivation from the
experimental histograms in the main paper.

The model consists of a gene which transitions randomly between an active state A, in
which transcription of the gene into molecules of mRNA (denoted M) is very efficient, and an
inactive state I, in which transcription is not possible. In the nomenclature of the main text,
the time during which the gene is in the active state A is the “burst” of mRNA synthesis.
The reactions which generate the stochastic chemical master equation describing this process
are as follows:

I
λ→ A

A
γ→ I

A
µ→ A + M

M
δ→ ∅

where λ is the rate of gene activation, γ is the rate of gene inactivation, µ is the rate of
transcription when the gene is in the active state, and δ is the rate of mRNA decay. We will
henceforth use M to denote the number of mRNA.

A steady-state solution to the discrete master equation exists, and is given by
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where m is a non-negative integer, ρ(m) represents the probability of having m mRNA, and

1F1(a, b, c) is a confluent hypergeometric function of the first kind (the derivation of this
formula will be given in a manuscript currently in preparation).

In the limit of large γ/δ, this becomes
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We used the full expression in Equation (1) for all the statistical procedures employed in this
paper, as described in the “Fitting of parameters to experimental distributions” section.



An interesting parameter regime to investigate is that of µ being large compared to the
other rates in the system. In this case, one can then make the approximation that M is a
continuous variable. With this approximation, the dynamics can be described by

dM

dt
= −δM + µf(t) (3)

Here, f(t) ∈ {0, 1} is a random telegraph signal representing the active and inactive states
of the gene; the rates of switching on and off are λ and γ, respectively. To find the steady
state mRNA distribution, we examine the conditional mRNA densities in both the active
and inactive state. In particular, we define

ρA(m, t)dm = Pr (f(t) = 1 and m ∈ (m, m + dm) at time t) (4)

ρI(m, t)dm = Pr (f(t) = 0 and m ∈ (m, m + dm) at time t) (5)

The total mRNA density we are interested in, ρ, is then given by the sum of these two
densities ρA + ρI. The probability flux of the two densities is determined by the rates of
production and degradation:

JA(m, t) = (µ− δm)ρA(m, t) (6)

JI(m, t) = −δmρI(m, t) (7)

Using these equations for the flux, conservation of probability then yields the following
equation for the time evolution of the two densities:

∂ρA

∂t
+

∂JA

∂m
= λρI − γρA (8)

∂ρI

∂t
+

∂JI

∂m
= −λρI + γρA (9)

Adding these two equations, we obtain

∂

∂m
(µρA − δmρ) = 0, (10)

implying that the difference µρA − δmρ is a constant. Since the densities ρA and ρ must
both go to zero as m becomes large, the constant must be zero, thus yielding the following
equations expressing the conditional densities in terms of the total density:

ρA =
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µ
ρ (11)

ρI =
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Inserting these expressions into Equation (9) yields the following ordinary differential equa-
tion for ρ:
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whose solution gives the following expression for the steady mRNA density
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where the constant of integration is determined by the normalization condition of the density
function.

As with the complete solution in Equation (1), an important limiting case is that where
the rate of inactivation, γ is significantly larger than the activation rate λ and is some-
what larger than the mRNA degradation rate δ. Physically, this corresponds to the case of
short but infrequent bursts of mRNA synthesis. Taking this limit, we obtain the following
approximate expression for the steady state mRNA density:
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This density takes the form of a Gamma distribution. In this case, the distribution is
characterized by only two parameters, λ/δ and µ/γ, rather than the three parameters in the
more general case. This is because, for large γ/δ, the bursts are of short duration, meaning
that mRNA degradation during the burst negligible (i.e., the system rarely leaves the linear
phase of the transient behavior). Since the parameter µ/γ defines the mean number of
mRNA produced during the burst, the specific values of the parameters µ/δ and γ/δ are
unimportant as long as their ratio is held constant.

Fitting of parameters to experimental distributions

To determine the parameters of our model, we fit our experimental data from the series of
doxycycline experiments to the steady-state solution to the master equation by using the
maximum likelihood method (the steady-state solution for each set of parameter values was
found through by using a numerical method to quickly compute the p.d.f given by Equation
(1)). For two of the cases analyzed (E-YFP-M1-7x at no doxycycline and RNA polymerase
II), this resulted in well-defined values for all three parameters, µ/δ, λ/δ, and γ/δ. However,
when examining the log-likelihood keeping λ/δ fixed while varying γ/δ and µ/δ, we found
that in the other cases, the maximum likelihood was spread along a “ridge” corresponding
to a constant ratio of γ/µ. This indicated that there was insufficient experimental data to
resolve the parameters γ/δ and µ/δ. This is most likely because the parameters fell in the
regime of large γ/δ, which, as outlined above, results in a gamma distribution in which only
the ratio of γ to µ is important. Rather than using the approximate gamma distribution
to find the value of µ/γ from the experimental data, we instead fitted the the data to the
full model while holding µ/δ fixed, because letting µ/δ vary resulted in unphysically large
values of µ/δ. The values used for µ/δ were 500 for cell line E-YFP-M1-1x and 910 for cell
line E-YFP-M1-7x (in the former case, a physically reasonable value was chosen, whereas in
the latter case, the value of µ/δ was chosen to be that obtained in the case of E-YFP-M1-7x
grown with no doxycycline, in which the value could be determined from the distribution
itself). Varying these values by 25% typically did not change the parameters λ/δ and µ/γ by
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more than 10% at most. 95% confidence intervals for the parameters were found by varying
one parameter while holding the others fixed and finding the value for the parameter that
decreased the likelihood by a factor of 0.05.

To show that the theoretical distributions generated by the parameters estimated by the
maximum likelihood method actually matched our experimental ones, we generated a large
set of likelihood values for data of the same size as our experimental sample (generated from
the model by a Monte Carlo method). We found that in all cases, the data was in the
middle 50th percentile, well within the middle 90th percentile that would indicate that the
experimental data was consistent with the model used.

Determination of protein mean and variances

In this section, we compute the mean and the variance of the protein distribution. These
expressions can yield insight into the key parameters contributing to cellular noise.

To begin, we use the approximation that µ is large, thereby allowing us to use Equation
(3) to describe the mRNA dynamics. The mean mRNA level of this system is given by

〈M〉 =
µ

δ

λ

λ + γ
(17)

To find the variance of the mRNA level in this system over time, we first subtract the mean
to produce a mean-zero process, yielding

dM̃

dt
= −δM̃ + µf̃(t)

This system has an impulse response

h(t) = H(t)µe−δt

where H(t) is the Heaviside function. Now let RM̃M̃(τ) be the autocorrelation function of
M̃ . Upon taking the Fourier transform, we obtain

R̂M̃M̃(ω) =
∣∣∣ĥ(ω)

∣∣∣2 R̂f̃ f̃ (ω)

Inverting the Fourier transform yields

RM̃M̃(0) =
1

2π

∫ ∞

−∞

∣∣∣ĥ(ω)
∣∣∣2 R̂f̃ f̃ (ω)dω

where RM̃M̃(0) =
〈
M̃2
〉

= var(M), which is the desired quantity. The autocorrelation of f

is given by

Rf̃ f̃ (τ) =
λγ

(λ + γ)2
e−(λ+γ)|τ |

Taking the Fourier transform and evaluating the integral gives the desired formula for the
variance:

var(M) = RM̃M̃(0) =
µ2λγ

δ(γ + λ)2(δ + γ + λ)
(18)
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This is the same as is obtained by taking the limit of large µ in the result computed by
Peccoud and Ycart [1] using moment generating functions to find the variance directly from
the master equation. However, our derivation shows that the result is still valid even if the
only stochastic element of the system is the telegraph forcing term corresponding to gene
activation, indicating that the random nature of the individual events of mRNA synthesis
and degradation are not particularly important to the overall stochastic behavior of the
system.

Using the expressions for the mean and variance obtained above, one finds the following
expression for the square of the noise, where we define the noise η as the standard deviation
divided by the mean:

η2 =
1

λ

(
δγ

δ + λ + γ

)
(19)

To model the protein dynamics, we extend the model of mRNA dynamics presented
above. The set of chemical reactions now include the production and degradation of the
proteins p:

I
λ→ A

A
γ→ I

A
µ→ A + M

M
δ→ ∅

M
µp→ M + P

P
δp→ ∅

As before, λ and γ are the gene activation and inactivation rates, respectively, and µ and δ
are the mRNA synthesis and decay rates. µp is the protein synthesis (i.e., translation) rate
(per mRNA molecule) and δp is the rate of protein degradation, and we use P to refer to the
number of protein molecules P. Equation (3) gives a differential equation for the dynamics of
the mRNA which is driven by a random telegraph signal f representing the gene activation
and inactivation events. The corresponding equation for the protein dynamics is

dP

dt
= −δpP + µpM(t) (20)

where M is the number of mRNA molecules. The mean number of proteins is given by

〈P 〉 =
µp (µ/δ)

δp

λ

λ + γ
(21)

obtained by simply multiplying the mean number of mRNA molecules in Equation (17) by
µp/δp.

To find the variance of the protein levels over time, we again turn the system into a
mean-zero process by subtracting the mean, yielding

dP̃

dt
= −δpP̃ + µpM̃(t) (22)
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where P̃ = P − 〈P 〉. The impulse response of this system is now given by

hp(t) = H(t)µpe
−δpt

where H(t) is the Heaviside function.
As before, we find the Fourier transform of the autocorrelation function of P̃ , denoted

RP̃ P̃ , is given by

R̂P̃ P̃ (ω) =
∣∣∣ĥp(ω)

∣∣∣2 ∣∣∣ĥ(ω)
∣∣∣2 R̂f̃ f̃ (ω) (23)

Again, one can obtain the variance by integrating, whence

var(P ) =
µ2µ2

p(γλ)(δ + δp + λ + γ)

(λ + γ)2δδp(δ + δp)(δ + λ + γ)(δp + λ + γ)
(24)

The square of the protein noise is then given by

η2
p =

γ

λ

δδp

δ + δp

δ + δp + λ + γ

(δ + λ + γ)(δp + λ + γ)
(25)

One important case to consider is that of fast mRNA degradation, i.e., δ � δp. This
assumption results in the following simplified expression for the protein noise:

η2
p =

1

λ

δpγ

δp + λ + γ
(26)

Notice that this equation is virtually identical to Equation (19), except that δ is replaced
by δp. This makes intuitive sense: if the protein decay rate is very small compared to
the mRNA decay rate, then the activation state of the gene is essentially reflected in the
mRNA level. On the time scale of the proteins, it will essentially see a telegraph-like mRNA
signal, thus resulting in identical noise properties to that of the mRNA. This is an important
simplification and we will adopt it for our analysis in many of the following sections.

Interestingly, a small protein decay rate can significantly reduce fluctuations in protein
levels even when genes only switch into a transcriptionally active state from time to time;
i.e., when λ is small. Physically, this situation is one where the proteins are generally quite
abundant, and the occasional mRNA burst merely serves to make up for the proteins lost
due to slow protein decay. In this case, the distribution is very nearly Gaussian, and so the
expression for the second order moments are actually physically meaningful. One can see
this in the protein probability density functions shown in Figure 7C.

Relationship between model and previous studies of in-

trinsic vs. extrinsic noise

The fact that the total noise (the combination of the contributions from both extrinsic and
intrinsic noise sources) observed in the E-YFP-M1-7x and L-GFP-M1-7x cell lines varies non-
monotonically as the overall level of gene expression is decreased is similar to observations
of the dependence of total noise upon the overall level of gene expression found in previous
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studies [2, 3, 4]. As mentioned in the main text, if the noise were due to mRNA dynamics
being governed by a simple birth-death process, one would expect that a monotonic decrease
in the mean would result in a monotonic increase in the noise: in that case, both the mean
and variance of the number of mRNA per cell would be µ/δ, where µ is the rate of mRNA
transcription and δ is the rate of mRNA decay. Thus, since the standard deviation is the
square root of the variance, a doubling of the mean would result in a reduction of the variance
by

√
2. This characteristic “square root” decrease in noise is often observed in stochastic

processes and is often referred to as the central limit theorem.
In the two studies where the authors were able to separate the total noise into its extrinsic

and intrinsic components [2, 4], the authors found that while the extrinsic noise also displayed
the characteristic non-monotonicity, the intrinsic noise decreased monotonically as the level
of gene expression increased, as is consistent with a stochastic process. This lead Raser and
O’Shea [4] to conclude that the non-monotonicity in the total noise observed by Blake et al.
[3] was primarily due to extrinsic noise.

In our experiments, we are unable to quantitatively determine the relative contributions
of extrinsic and intrinsic noise to the total noise, since doing so requires that the two re-
porters used are statistically identical [2, 5]. This is impossible in the case of mammalian
cells, since each cell line established displays different behaviors depending on where the
gene was randomly integrated. However, our experiments where the two reporter genes are
integrated into different genomic loci shows that there is no correlation at all between the
two reporters used (Fig. 5B). Qualitatively, this shows that the extrinsic contribution to
the total noise is very low; any significant extrinsic contribution would manifest itself as
a detectable correlation. This validates one of the key implicit assumptions of the model
presented, namely that one may safely neglect extrinsic factors.

There are two other corroborating pieces of evidence that the non-monotonic noise profile
displayed in the E-YFP-M1-7x and L-GFP-M1-7x cell lines is not due to an inability to
distinguish between intrinsic and extrinsic noise. First, the noise in the E-YFP-M1-1x cell
line did not display this non-monotonicity; were the non-monotonic profile due to some
general mechanism of extrinsic noise generation, one would expect it to affect this cell line
as well. Second, Elowitz et al. [2] traced the source of the extrinsic noise back to variations
in a transcriptional activator shared between the two genes. They showed [5] that titrations
in the variations of this activator as the level of induction was altered could result in a non-
monotonic noise profile. However, that possibility is explicitly ruled out here, as we have
shown that variations in the level of the transcriptional activator tTA have no bearing on
the noise observed.

Our finding that the mRNA noise in mammalian cells is primarily intrinsic is at odds with
the results from previous studies performed with fluorescent protein reporters indicating that
the noise in yeast was primarily extrinsic rather than intrinsic [4, 6]. The correlations they
observed may be partly due to global variations in the rates of protein translation and decay,
which are extrinsic factors excluded in our experiments. We should point out, though, that
the mRNA and protein levels in the L-GFP-M1-7x cell line correlate rather well (Figure 7A).
This may, however, be due to the fact that the GFP expressed was a destabilized variant
with a half-life on the order of the mRNA itself. It is also possible that the use of fluorescence
assisted cell sorting (FACS) in those studies could introduce confounding effects such as cell-
size that might be counted as extrinsic variations. Some new evidence indicates that this
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may be the case, as the specifics of the gatings used in the analysis of FACS data can change
the measurements of the relative contributions of intrinsic and extrinsic variations [7]. An
alternate explanation may lie in the work of Becskei et al. [8], where the authors show that
there is correlation in gene activity between homologous loci; this may also help explain the
findings of Raser and O’Shea [4].
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